The effects of agonists of ionotropic GABA(A) and metabotropic GABA(B) receptors on learning.

نویسندگان

  • Evgeniya A Zyablitseva
  • Nikolay S Kositsyn
  • Galina I Shul'gina
چکیده

The research described here investigates the role played by inhibitory processes in the discriminations made by the nervous system of humans and animals between familiar and unfamiliar and significant and nonsignificant events. This research compared the effects of two inhibitory mediators of gamma-aminobutyric acid (GABA): 1) phenibut, a nonselective agonist of ionotropic GABA(A) and metabotropic GABA(B) receptors and 2) gaboxadol a selective agonist of ionotropic GABA(A) receptors on the process of developing active defensive and inhibitory conditioned reflexes in alert non-immobilized rabbits. It was found that phenibut, but not gaboxadol, accelerates the development of defensive reflexes at an early stage of conditioning. Both phenibut and gaboxadol facilitate the development of conditioned inhibition, but the effect of gaboxadol occurs at later stages of conditioning and is less stable than that of phenibut. The earlier and more stable effects of phenibut, as compared to gaboxadol, on storage in memory of the inhibitory significance of a stimulus may occur because GABA(B) receptors play the dominant role in the development of internal inhibition during an early stage of conditioning. On the other hand this may occur because the participation of both GABA(A) and GABA(B) receptors are essential to the process. We discuss the polyfunctionality of GABA receptors as a function of their structure and the positions of the relevant neurons in the brain as this factor can affect regulation of various types of psychological processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Slow synaptic inhibition mediated by metabotropic glutamate receptor activation of GIRK channels.

Glutamate is the predominant excitatory neurotransmitter in the vertebrate CNS. Ionotropic glutamate receptors mediate fast excitatory actions whereas metabotropic glutamate receptors (mGluRs) mediate a variety of slower effects. For example, mGluRs can mediate presynaptic inhibition, postsynaptic excitation, or, more rarely, postsynaptic inhibition. We previously described an unusually slow fo...

متن کامل

A Gut Feeling about GABA: Focus on GABAB Receptors

γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the body and hence GABA-mediated neurotransmission regulates many physiological functions, including those in the gastrointestinal (GI) tract. GABA is located throughout the GI tract and is found in enteric nerves as well as in endocrine-like cells, implicating GABA as both a neurotransmitter and an endocrine mediator influen...

متن کامل

Allosteric Modulators of GABAB Receptors: Mechanism of Action and Therapeutic Perspective

gamma-aminobutyric acid (GABA) plays important roles in the central nervous system, acting as a neurotransmitter on both ionotropic ligand-gated Cl(-)-channels, and metabotropic G-protein coupled receptors (GPCRs). These two types of receptors called GABA(A) (and C) and GABA(B) are the targets of major therapeutic drugs such as the anxiolytic benzodiazepines, and antispastic drug baclofen (lior...

متن کامل

Characterization of the binding of [3H]CGP54626 to GABAB receptors in the male bullfrog (Rana catesbeiana).

Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the vertebrate brain. GABA activates both ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors in mammals. Whether non-mammalian vertebrates possess receptors with similar characteristics is not well understood. We used a mammalian GABA(B)-specific antagonist to determine the pharmacology of putative receptors in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Spanish journal of psychology

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 2009